
Levels of Abstraction
in

Operating Systems

Robert L . Brown
Peter J . Denning
Walter F. Tiehy

July, 191i4

Research Institute for Advanced Computer Science
NASA Arnes Research Center

RlACS TR. 84.5

{ N A S A - C R - 1 8 7 2 8 2) LEVELS OF A B S T R A C T I O N IN
OPERATING SYSTEMS (Research I n s t - for
Advanced Computer Science) 45 p

0

h90-71363

uncl as
00/61 0295376

Rl ACS
Research Institute for Advanced Computer Science

Levels of Abstraction
in

Operating Systems

Robert L. Brown
Peter J . Denning
Walter F. Tichy

Abetract:

By defining the wr's view of a computer system and aiding in every command, the. operating system
plays a critical role in computing. Operating systems can be modeled by a hierarchy of fevers correspond-
ing to important time scales or object sires within the computer system.

_ .

Key words and Phrases:

Abstract data types, distributed file q s k m , distributed system, hierarchical design, levels of abstraction,
network operating system, object-orimted system, operating system.

Work on this article was supported by the National Aeronautics and Space Administration under
Contract NASZ-11530

Authors' add-: Robert L. Brown, RUCS, NASA Ama Bcrurch Center, MS 230-6, Moffett Field, CA 94035 (net ad-
dress: brornOricrcr); Peter 1. Denning, RUCS, NASA Ama Raeuch Center, MS 2m5, Moffett ?%Id, CA 94035 (net addreu:
denningOriru); Walter F. Tichy, Computer Scienca Department, Purdue University, Weat Lafayette, IN 47907 (net add-:
tich yOpurduc).

1 . INTRODUCTION ...
1.1 - Definitions of Operating System ...
1.2 - Current Operating Systems ..
2 - MODEL OF AN OPERATING SYSTEM ..
2.1 - The Single-Machhe Levels: 1-8-. ..
2.2 - The Multi-Maehhe Levels: 9-14 ..
2.5 - General Comments on Level Structure ..
5 - DISTRIBUTED CAPABILITIES (Level 8) ..
4 - COMMUNICATIONS (Level 9) ..
5 - FILES (Level 10) ..
6 - DEVICES (Level 11) ...
7 - STREAM 1/0 (Level 12) ...
8 - USER PROCESSES (Level 15) ...
9 - DIRECTORIES (Level 14) ...
10 - SHELL (Level 15) ...
11 - INITIALIZATION ...
12 - CONCLUSION ...
13 - ACKNOWLEDGEMENTS< ..
14 - REFERENCES ...

.. . .

LIST OF TABLES

Table 1 . An Operating System Design Hierarchy ..
Table 2 . Capability Type Marks and their Abbreviations ..
Table S - Specification of Capability Operations ..
Table 4 - !3priiEc&on ef Gxxzmde&m Level Interface ...
Table 5 - Specification of Files Level Interface ...
Table 6 - Specification of Devices Level Interface ...
Table 7 - Semantics of 1/0 Operations on Objects ...
Table 8 - Specification of User Rocesa Operations ...
Table 9 - Specification of a Directory Manager Interface ..

LIST OF FIGURES

Figure 1 . Storage Structures for Representing Objects ..
Figure 2 . Intermachine Pipe ...
Figure 3 . Steps of an Editing Session ...
Figure 4 - User Process Structure ...
Figure 5 - A Directory Hierarchy ...
Figure 6 - Directory Structure ...

1
2
3

6
8

10
13
14
19
22
24
26
28
32
36
38
39
39

40

7
17
19
20
23
26
29
31
35

16
21
25
30
32
33

1. INTRODUCTION

The operating systems of 1955 were control programs a few thousand bytes long that

scheduled jobs, drove peripheral devices, and billed users. The operating systems of 1984 are

much larger both in size and in responsibility. The largest ones, such as Honeywell’s Multics or

IBM’s MVS, are tens of millions of bytes long. Intermediate ones, such as Bell Labs’s UNIX or

Digital Equipment’s VMS, are several hundreds of thousands of bytes long. Even the smallest,

most pared-down systems for personal computers are tens of thousands of bytes long.

The intellectual content of the field.of operating systems was recognized in the early

1970s. Virtually every curriculum in computer science and engineering includes a course on

operating systems. Texts are numerous. The continuing debates - over the set of concepts

that should be taught and over the proper mix between concepts and implementation projects

. . . < *‘. & . I

- -- are signs of the vitality of the field. - . . -.ai

Since 1975, personal computers for home and business have grown into a multi- billion

dollar industry. Advanced graphics workstations and microcomputers have been proliferating.

Local networks - e.g., Ethernet, ring nets, wideband nets - and network protocols - e.g., X.25,

r U L , TCP/!P -- a!!cw !arge eyskma to be constructed from many small ones. The available n r r n

hardware has grown rapidly in power and sophistication.

In view of the rapid advances in power and sophistication of available hardware, it is

natural to ask: Will hardware eventually obviate software control programs? Is the intellectual

core recorded in operating systems texts outmoded? Is operating systems a dying field? In

this paper we will argue that the power and complexity of the new hardware intensifies the

need for operating systems, that the intellectual core contains the concepts needed for today’s

computer systems, and that operating systems are essential.

July 10, 1984 2

1.1. Definitions of Operating System

Before looking into these questions, we need to agree on a definition of “operating

system”. The oldest definition, which says an operating system is a control program jor

allocating resources among competing tasks describes only a small portion of a modern

operating system’s responsibilities. This definition is inadequate.

Among the great problems faced by operating systems designers is managing the

complexity of operations a t many levels of detail, ranging from hardware operations that take

one billionth of a second to software operations that take tens of seconds. An early strategem

was information-hiding -- confining the details of managing a class of “objects” within a

module that has a good interface with its users. With information-hiding, the designers can

protect themselves from extensive reprogramming if the hardware or some part of the software

changes: the change affects only the small portion of the software interfacing directly with that

system component. This principle has been extended from isolated subsystems to an entire

operating system. The basic idea is to create a hierarchy of levels of abstraction, so that a t

any level one can ignore the details of what is going on at all lower levels. At the highest level

is the user of the system, who ideally is insulated from everything except what he aims to

accomplish. As a consequence of these developments, a better definition today is, an operating

system is a set of software eztensions of primitive hardware, culminating in a virtual machine

that 8erves a8 a high level programming environment.

** =:

Operating systems of this type can support diverse environments: programming, text

processing, real-time processing, office automation, database, and hobbyist.

July 10,1984 3

1.2. C*wz-ezt. Operatirag Systems -

Most operating systems for large mainframes are direct descendants of third generation

systems - e.g., Honeywell Multics, IBM MVS and VM/370, and CDC Scope. These systems

introduced important concepts such as timesharing, multiprogramming, virtual memory,

sequential processes cooperating via semaphores, hierarchical file systems, and device

independent I/O [Dennf 1, Denn761.

During the 196Os, there were many projects to construct timesharing systems and test the

many new operating systems concepts. These included MIT’s Compatible Time Sharing

System (CTSS), the University of Manchester Atlas, the University of Cambridge Multiple

Access System (CMAS), IBM TSS/360, and RCA Spectra/70. The most ambitious project of

all was Multics (Multiplexed Information and Computing Service) for the General Electrical

645 (later renamed Honeywell 6180) processor [Orga72]. Multics simultaneoualy tested new

concepts of processes, interprocess communication, segmented virtual memory, page

replacement, linking new segments to a computation on demand, automatic multiprogrammed

load control, access control and protection, hierarchical file system, device independence, 1 /0

redirection, and a high-level language shell.

Another important concept of third generation systems was the virtual machine, a

simulated copy of the host. Virtual machines were first tested around 1966 on the M44/44X

project at the IBM T. J. Watson Research Center. In the early 19709 virtual machines were

used in IBM’s CP-67 system, a time sharing system that assigned each user’s process to its own

virtual copy of the IBM 360/67 machine. This system has been moved to the IBM 370

machine and is now called VM/370 [Gold74, IBM731. Beeause each virtual machine can run a

different copy of the operating system, VM/370 is effective for developing new operating

systems within the current operating system. But because virtual machines are well isolated,

4 July 10, 1984

communication among them is expensive and awkward.

Perhaps the most influential current operating system is UNIX, a complete reengineering

of Multics for the DEC PDP family of computers. It is an order of magnitude smaller than

Multics. It retains the most useful concepts of Multics -- processes, hierarchical file system,

device independence, 1 / 0 redirection, and a high-level language shell. It dispensed with virtual

memory and the detailed protection system; it introduced the pipe. It offered a large library of

utility programs that were well integrated with the command language. Most of UNIX is

written in a high-level language, C, which has allowed it to be transported to a wide variety of

processors, from mainframes to personal computers (Ritc74, Kern841.

-

In systems consisting of multiple UNIX machines connected by a high-speed local

network, it is desirable to hide the locations of files, users, and devices from those who do not

wish to deal with those details. LOCUS is a distributed version of UNIX that accomplishes p .

this by means of a directory hierarchy that spans the entire network [PopeBl].

In recent years a large family of operating systems has been developed for personal

computers. These include MS-DOS, PC-DOS, APPLEDOS, CP/M, Coherent, and Xenix.

These are all simple systems with limited function, designed for 8- and 16-bit microprocessor

chips with small memories. In many respects, the development of personal computers is

repeating the history of mainframes in the early 1960s - for example, multiprocess operating

systems for microcomputers have appeared only recently in the forms of pared-down UNIX-like

systems such as Coherent and Xenix. Because only the large firms can sell enough machines to

make their own operating systems viable, there is strong pressure for standard operating

systems. The emerging standards are PC-DOS, CP/M, and UNIX.

Research on operating systems continues. There are numerous experimental systems

exploring new concepts of system structure and distributed computation. The operating

July 10,1984 5

system for the Cambridge ZAP machine expioiia ihe hardware’s microcode siippori for

capability addressing to implement a large number of processes in separately protected

domains. Data abstraction is easy to implement on this machine (Wilk791.

StarOS is an operating system for the Cm* machine. Its central purpose is the supportof

the “task force,” a group of concurrent processes cooperating in a computation. StarOS also

uses capabilities to control access to objects [Jone79]. Another operating system for the Cm*

machine is Medusa. It is composed of several “utilities”, each implementing a particular

abstraction such as a file system. Each utility can-include several parallel processes running on

separate processors. There is no central control [OustBO].

Grapevine is a distributed database and message delivery system used widely within the

Xerox Corporation. The network contains special nameservers that can find the locations of

users, groups, and other services when given their symbolic names. There is no central control

and it can survive the failures of the nameserver machines [Birr82]. Because it does not

provide all the services of a high-level programming environment, Grapevine is not a true

operating system.

-‘

The “V kernel” is an experimental system aiming for efficient, uniform interfaces between

system components. A complete copy of the kernel runs on each machine of the network and

hides the locations of files, devices, and users. V is a descendent of THOTH, an earlier system

worked on by the author of V [Cher84, Cher821.

The Provably Secure Operating System (PSOS) is a level-structured system whose high-

level code has been proved correct in the context of a rigorous hierarchical design methodology

developed at SRI International [Neum80]. Although it was intended for secure computing,

PSOS explored many principles that can help any operating system toward the goal of

provable correctness.

July 10, 1984 6

These examples demonstrate that the new technology has created new control problems

for operating systems designers to solve. The need for operating systems is stronger than ever.

2. MODEL OF AN OPERATING SYSTEM

The hierarchical structure of a model operating system separates its functions according

to their characteristic time scales and their levels of abstraction. Table 1 shows an

organization spanning fifteen levels. It is not a model of any particular operating system but

rather incorporates ideas from several systems. It includes facilities for distributed processing.

Each level is the manager of a set of “objects”, which can be hardware or software and

whose nature varies greatly from level to level. Each level also defines operations that can be

carried out on those objects. The levels obey two general rules:

1. Hierarchy. Each level adds new operations to the machine and hides selected- operations

at lower levels. The set of operations visible at a given level form the instruction set of an

abstract machine. Hence a program written a t a given level can invoke visible operations

of lower levels but no operations of higher levels.

2. Information Hiding. The details of how an object of given type is represented or where it

is stored are hidden within the level responsible for that type. Hence no part of an object

can be changed except by applying an authorized operation to it.

The principle of data abstraction embodied in the levels model traces back to Dennis and

Van Horn’s 1966 paper, which emphasized a simple interface between users and the kernel

[Denn66]. The first instance of a working operating system whose kernel spanned Pveral levels

was reported by Dijkstra in 1968 [Dijk68]. The idea has been extended to generate families of

operating systems for related machines (Habe761 and to increase the portability of an operating

July 10,1964 7

TABLE 1: An Operating System Design Hierarchy.
~-

.eve1 Name Objects Example Operations

Shell User programming environment

sca lu data, array data

statements in shell langaage 15

14

13

12

11

10

9

Dircetoricr D i r e c t o h create, destroy, attach,

detach, eenrch, lirt

U r r Proccua Uaer pmceu fork, quit, kill, suspend,

resume

open, close, read, write Stream I/O

Devica

F i i Sptem

Streruns

External devicer and
pcripheralr such M

printer, dupky, keyboud

Fila

create, destroy, open, c k ,

read, write

create, destroy, open, dac,
red , write . -

Communications P i p s create, datroy, open, c b ,

r e d , write

Capabiit ia

Virtual Memoq

Local Secondary Store

Primitive Procaw

In t empt .

Proeedura

Instruction Set

Electronic Circuits

CapAbiitia create, validate, attenuate

read, write, fetch

r e d , write, allocate, free

Segments

Blocb of data,
device channelr

suspend, mume ,

wait, signal
Primitive proceu,

aemaphom, ready lirt

invoke, mark, unmark, rets Fault handler p r o ~ m r

mark-stack, call, return Procedure r p m t r ,
Call stack, d h p k y

Evaluation stack,

microprogram interpreter,

load, store, un-op, bin-op

braach, array-ref, etc.

Registen, g a b ,

b u m e k .

clear, trander, compkmeml
activate, etc.

July 10, 1984 8

system kernel (Cher821.. The Provably Secure Operating System (PSOS) is the first complete

level-structured system reported and formally proved correct in the open literature [Neum80].

We now turn to a brief summary of each level in Table 1. Greater detail follows in later

sections.

2.1. The Single-Machine Levels: 1-8

Levels 1-8 are called single- machine levels because their operations are well understood

from primitive machines and require little modification for advanced operating systems.

The lowest levels include the hardware of the system. Level 1 is the electronic circuitry,

where the objects are registers, gates, memory cells, and the like, and the operations are

clearing registers, reading memory cells, and the like. Level 2 adds the processor’s instruction

set, which can deal with somewhat more abstract entities such as an evaluation stack and an

array of memory locations. Level 3 adds the concept of a procedure and the operations of call

-
. y*-

and return Level 4 introduces interrupts and a mechanism for invoking special procedures when

the processor receives an interrupt signal.

The first four levels correspond roughly to the basic machine as it is received from the

manufacturer, although there are some interactions with the operating system. For example,

interrupts are. generated by hardware but the interrupt-handler routines are part of the

operating system.

Level 5 adds primitive processes, which are simply single programs in the course of

execution. The information required to specify a primitive process is its stateword, a data

structure that can hold the values of the registers in the processor. This level provides a

context switch operation, which transfers the attention of of a processor from one process to

another by saving the stateword of the the first and loading the stateword of the second. This

July 10,1984 9

level contains a scheduier that seiects, from a “reudy :i&” of avai:ab!e pioe-, the zext

process to run after the current process is switched off the processor. This level also provides

semaphores, the special variables used to cause one process to stop and wait until another

process has signalled the completion of a task. This level has a simple hardware

implementation (Denn81J. Primitive processes are analogous to system processes in PSOS and

lightweight procesecs in LOCUS.

Level 6 handles access to the secondary-storage devices of a particular machine. The

programs at, this level are responsible for operations such as positioning the head of a disk

drive and transferring a block of data. Software at a higher level determines the address of the

data on the disk and places a request for it in the device’s queue of pending work; the

requesting process then waits at a sempahore until the transfer has been completed.

Level 7 is a standard virtual memory, a.scheme,that gives the programmer the illusion of w e - -

having a main memory space large enough to hold the program and all its data even if the

available main memory is much smaller [Denn70]. Software at this levei handles the interrupts

generated by the hardware when a block of data is addressed when it is not present in the main

memory; this software locates the missing block in the secondary store, frees space for it in the

main store, and requests Level 6 to read in the missing block.

Level 8 implements capabilitiee, which are unique internal addresses for software objects

definable at higher levels. This level allows capabilities to be read, but not altered. This level

provides a validate operation that enables the programmer of higher-level procedures to verify

that actual parameters are of the expected types.

Up through level 8, the operating system deals exclusively with the resources of a single

machine. Beginning with the next level, the operating system encompasses a larger world

including peripheral devices such as terminals and printers and also other computers attached

July 10, 1984 10

to the network. In this world, pipes, files, devices, user processes, and directories can be shared

among all the machines.

2.2. The Multi-Machine Levels: 9.14

Every object in the system has two names: its “external name”, a string of characters

having some meaning to users, and its “internal name”, a binary code used by the system to

locate the object. The mapping from external to internal names is controlled by the user

through directories. The mapping from internal names to physical locations is controlled by

the operating system, giving it the ability to move objects among several machines without

affecting any user’s ability to use those objects. This principle, called delayed binding, was

important in third generation operating and is even more important today [Denn’ll].

To hide the locations of all sharable objects, both external and internal names must be
4.

L

global, Le., they can be interpreted on any machine. Unique external names can be constructed

as pathnames in the directory hierarchy (defined at Level 14). Unique internal names are

provided by capabilities (Level 8). If the local network communication system (Level 9) is

efficient, software at the higher levels can obtain access to a remote object with little penalty.

Level 9 is explicitly concerned with communication between processes, which can be E
!
I arranged through a single mechanism called a pipe. A pipe is a one-way channel: a stream of

data flows into one end and out of the other. A request to read items is delayed until they are

actually present in the pipe. A pipe can equally well connect two processes on the same

‘

machine or on different machines. A set of pipes linking levels in all the machines can serve as

a broadcast facility, which is useful for finding resources that might be anywhere in the

network [Bogg83]. Pipes are implemented in UNIX [Ritc74] and have been copied in recent

systems such as iMAX [Orga83] or XINU [Come84].

July 10, 1984 11

---_ Levei 10 provides for iong-term storage of named fiies. Whereas Levei 6 deais with disk

storage in terms of tracks and sectors - the physical units of the hardware - Level 10 deals

with more abstract entities of variable length. Indeed a file may be scattered over many

noncontiguous tracks and sectors. To be examined or updated, a file’s contents must be copied

between virtual memory and the secondary storage system. If a file is kept on a different

machine, Level-10 software can create a pipe to Level 10 on the file’s home machine.

Level 11 provides access to external input and output devices such as printers, plotters,

and the keyboards and display screens of terminals. There is a standard interface with all

these devices and again a pipe can be used to gain access to a device attached to another

machine.

Level 12 provides a means by which user processea can be attached interchangeably to

. -:. pipes, files, or devices for input and output. The idea is to make each of the fundamental - . -

operations of Levels 9,10, and 11 (OPEN, CLOSE, READ, and WRITE) look the same so

that the author of a program need not be concerned with the differences among these objects.

This is achieved in two steps. First, the information contained in pipes, files, and devices is

regarded simply as streams of bytes; requests for reading or writing move segments of data

between streams and a user process. Second, a user process is programmed to request all input

and output via ports, which are attached by the open operation a t run time to specific pipes,

files, or devices.

Level 13 implements user processes, which are virtual machines executing programs. It is

important to distinguish the user process from the primitive process of Level 5. All the

information required to define a primitive process can be expressed in the stateword that

records the contents of the registers in the processor. A user process includes not only a

primitive process, but also a virtual memory containing the program and its work space, a list

July 10, 1984 12

of arguments supplied as parameters when the process was started, a list of objects with which

the process can communicate, and certain other information about the context in which the

process operates. A user process is much more powerful than a primitive process.

Level 14 manages a hierarchy of directories that catalogue the hardware and software

objects to which access must be controlled throughout the network: pipes, files, devices, user

processes, and the directories themselves. The central concept of a directory is a table that

matches external names of objects with capabilities containing their internal names. A

hierarchy arises because a directory can include among its entries the names of subordinate

directories. Level 14 ensures that the subhierarchies encached a t each machine are consistent

with one another.

The directory level is responsible only for recording the associations between the external

names and capabilities; other levels manage the objects themselves. Thus when a directory of

devices is searched for the string “laser”, the result returned is merely a capability for the laser

printer. The capability must be passed to a program a t Level 11, which handles the actual

transmission to that printer.

Level 15 is the “shell”, so called because it is the level that separates the user from the

rest of the operating system. The shell is the interpreter of a high level command language

through which the user gives instructions to the system. The shell incorporates a listener

program that responds to a terminal’s keyboard; it parses each line of input to identify

program names and parameters; it creates and invokes a user process for each program and

connects it as needed to pipes, files, and devices.

July 10,1984 1s

2.3. General Comments on Levei Structure

The level structure is a hierarchy of functional specifications. Its purpose is to impose a

high degree of modularity and enable incremental verification, installation, and testing of the

software.

In a functional hierarchy, a program at a given level may directly call any visible

operation of a lower level. No information flows through any intermediate level. The level

structure can be completely enforced by a compiler, which can insert procedure calls or expand

functions in-line [Habe76]. A recent example of its use is in XINU, an operating system for a

distributed system based on LSI 11/02 machines (Come841.

It is important to distinguish the level structure discussed here from the layer structure of

the IS0 (International Standards Organization) model of long-haul network protocols

(Tane8lj. In the IS0 model, information is passed down through all the layers on the sending

machine and back up through all the layers on the receiving machine. Each layer adds

overhead to a data transmission, whether or not that overhead is required. Models for long-

haul network protocol structure may not be efficient in a local network fPope811.

.*

A significant advantage of a functional levels over information-transferring layers is

efficiency: a program that does not use a given function will experience no overhead from that

function’s presence in the system. For example, procedure calls will validate capabilities only

when they are expected. Common objects (such as pipes, files, devices, directories, and user

processes) are implemented. by their own levels rather than as new “types” within a general

. type-extension scheme [Wulf81].

Each level should be able to locate local objects by their internal names without having to

rely on a central mapping mechanism. This is not only a step toward reliability in a

distributed network, but also efficiency because central mechanisms are prone to be

July 10, 1984 14

bottlenecks.

Operating system designers ought to take reasonable steps to verify that each level of the

operating system meets its specifications. This too serves efficiency as well as reliability: run-

time checks need be included in system procedures only for conditions that cannot easily be

verified a priori. Thus, system procedure calls must check at run time that expected

capabilities are present as parameters because the calling programs may be unverified; but

other aspects of parameter type checking can be performed by a compiler.

In the.following sections we will give more detail about the mechanisms from the

capability level [Level 8) upwards.

3. DISTRIBUTED CAPABILITIES (Level 8)

The external names of sharable objects are character strings of arbitrary length having ‘ V

meaning to human users. Because these strings are difficult to manipulate efficiently, the

operating system provides internal names for quick access to objects. One purpose of Level 8 is

to provide a standard way of representing and interpreting internal names for objects.

To prevent a process from applying invalid operations to an object whose internal name it

knows, the operating system can attach a type code and an access code to an internal name.

The combination of codes (type, access, internal-name) is called a capability. All processes are

prevented from altering capabilities. The system assumes that the very fact that a process

holds a capability for an object is proof of its authorization to use that object; processes are

responsible for controlling the capabilities they hold.

The simplest way to protect capabilities from being altered is to tag the memory words

containing them with a special bit and to permit only one instruction, the “create-capability”

instruction, to set that bit [Fabr74, Wilk79). The IBM System 38 is a recent example of an

July 10,1984 15

efficient system using tags to disiing&& c@d%cs f:=m ether & j ~ t s ir? memory IT.evv841. L-- , - -,

Capabilities were first proposed as an efficient method of implementing an object-oriented

operating system [Denn66]. This has continued to be the main reason for using them

IWulf81, Levy84, Orga831.

All existing implementations of capabilities are based on a central mechanism for

mapping the internal name to an object. These mappings are direct extensions of virtual

memory addressing schemes [Denn76, Fabr741. Unfortunately, a central mapping scheme

cannot be used with a distributed system whose component machines may fail. So the

responsibility for mapping must be distributed by allowing each the procedures of Levels 9-14

on each machine to read and interpret locally the fields within validated parameter

capabilities.

The storage structure and mapping scheme for capabilities is illustrated in Figure 1. The .

name field of a capability of type T consists of a code Mfor the machine on which the

capability was created and an index number I. The machine number is needed because some

Capabilities (those for open pipes, files, and devices) can only be used on the issuing machine.

The access code specifies which of the 2'-type operations can be applied to the object. The

index number I is used by the level in charge of T-type objects on machine M to address a

descriptor block for the given object. The descriptor block records control information about

an object, times and dates of creation and last update, and current size and attributes of the

object. The location of the descriptor block denotes the location of the object - moving the

descriptor block from one machine to another effectively moves the object.

The procedures implementing operations at Levels 9-15 must conform to certain

standards that ensure the proper use of capabilities. One is an agreement on the codes for the

object types; eight are listed in Table 2. We will use the notation T-cap to denote a

July 10, 1984 16

name = (machine#,index) 3
Process Type Access Name

Memory Segment
' Level

-
Block

Storage
Level

FIGURE 1. The storage structure for representing object consists of a chain starting with a
capability, through a local map under the control of the object's level, through a descriptar
block, to the object itself. A change in location of the object requires no change in any
capability. The index numbers are generated locally by the level when it creates objects. In
this example, the process holds two capabilities of type T; one of the objects is in a segment in
virtual memory and the other is in a block of secondary storage.

July 10, 1984 17

capability of type T where T i s one of the abbreviations in the table (e.g. fiie-capj7

The remaining standards concern the creation of capabilities pointing to new objects and

the application of specific operations to those objects. Suppose Level L (L > 8) is the manager

of T-type objects. This level contains a procedure to create new objects of type T and one or

more procedures to apply given functions to objects of type T. The create operation must use

a call of the form

T-cap := CREATE-T(initia1-value)

This procedure performs all the steps required to set up the storage for a new object of type T:

it obtains space in secondary storage for the object and stores in i t the given initial value, it

sets u p a descriptor block, it finds an unused index and sets up the entry in the local map, and

finally it creates a capability of type T (denoted “ T a p ”) .

TABLE 2: Capability Type Marh and their Abbreviations.

Level Type mark Abbreviation

14 d m t o y dir

15 u.cr proccu UP
11 device dev

open device 0P-d-

open f& op-file

open pipe o p g i p e

10 file fde

1 9 PiPC PiPC

July 10, 1984 18

Creating a capability is a critical operation. Level 8 implements a special operation for

this purpose:

T-cap := CREATE-CAP(I)

where l i s the local index number chosen by Level L. When used inside the CREATE-T

operation on machine M, CREATE-CAP constructs a capability (T, A, M, I), sets to 1 the

capability bit of the memory word containing it, and returns the result. The code for Mcomes

from a register in the processor. The code for A is the one denoting maximum access. The

code for T comes from a field in the program status word (PSW), a processor register that also

contains the program counter of the current procedure. The compilers must be set up to

generate type(PS W)= T only for the CREATE-T procedure and type(PS W)=null for all other ~

procedures. CREATE CAP fails if executed when type(PSW)=null. -_ - *
-

The procedures for applying operations to a given object have the generic form

APPLY-OP(T-cap, parameters)

which means that OP(parameters) must be applied to the object denoted by T-cap. The

compiler can validate that the first actual parameter on any call to A P P L Y O P is indeed of

type T by using another operation of Level 8, called VALIDATE, which checks that this

parameter is a capability whose type code is T and whose access code enables operation OP.

VALIDATE can also be used to verify the presence of other capabilities among the other

parameters.

e

A procedure may reduce the access rights of a capability it passes to another procedure by

using the Level-8 operation ATTENUATE.

July 10, 1984

Table 3 summarizes the operations impiemented at Levei 8.

19

4. COMMUNICATIONS (Level 9)

The communications level provides a single mechanism, the pipe, for moving information

from a writer process to a reader process on the same or different machines. The most

important property is that the reader must stop and wait until the writer has put enough data

into the pipe to fill the request. Level 9 gives the higher levels the ability to move objects

among the nodes of the network.

The external interface presented by the communications level consists of the commands in

Table 4. When two communicating processes are on the same machine, a pipe between them

can be stored in shared memory and the READ-PIPE and WRITE-PIPE operations are

implemented the same as the send and teccivc operations for “message queues” [Brin73]. _ a +

TABLE 3: Specification of Capabdity Operatiom (Level 8).
i

I/ Form of call Effect I

T-cap := CREATE-CAP(I) If the typcmark in the current PSW u non-null, create a
new capability with type fnld set to that mark, ace- code
maximum, machine field the local machine identifHr, and
index I.

V e m the capnhility at the cdkr’o virtud addreoo p. For at
least one i=l, ..., I the following murt be true: the capp.bfity
cont.ino Tiin ita type field and permito u c e n .i. If Ti
denoteo o p g i p e . op-fde, or op-dev, the machine field
murt match the identifier of the local machine. (Fail. if
thew conditionr are not met.)

VALIDATE(p, I, (T l , d) , ..., (Ta,aa))

cap := ATTENUATE(cap, mark) Returnr a copy of the given capability with the seceu field
replaced by the bitwioe AND of mark and the acceu field
from cap.

July 10,1984

Form of call Effect

20

pipe-cap := CREATE-PIPE()

TABLE 4: Specification of Communication Level Interface (Level 9).

DESTROY -PIPE(pipe-cap)

,pgipe-cap := OPEN-PIPE(pipe-cap, m)

READ-PIPE
WRITE-PIPE
CLOSE-PIPE

opgipe-cap := BROADCAST(mrg)

Creates a new empty pipe and returns a capability for it. (If
the caller is a urer process, it can store this capability in a
directory entry and make the pipe available throughout the
sptem.)

Destroy the given pipe (undo a create pipe operation).

Opens the pipe named by the pipe capability by allocating
itorage and retting up a dewriptor block. Initially, the pipe
ir empty. If rw=writc, the open-pipe capability hM its write
permimion set and can be ured only by the procerr at the
input end of the pipe. If rw=red, the open-pipe capability
h a its read permirrion set and can be ured only by the
procesr at the output end of the pipe. Docr not return until
both reader and writer have requested connections. (Fail# if
the pipe ir already open for writing when rw=wrilc or
reading when rw=red.) If both render and receiver ere on
the same machine, the open-pipe descriptor block will
indicate that shared memory c a n be ured for the pipe;
otherwise a network protocol must be ured.

There have the same effects M the READ, WRITE, and
CLOSE operationr described in the rection on stream I/O.

Broadcast a message to all type managen in the network
that manage objectr of the same type M the c d h g local
type manager. Returnr an open pipe capability for reading
responses.

When the two processea are on different machines, the communications level must

implement the network protocols required to move information reliably between machines.

(See Figure 2.) These protocols are much simpler than long-haul protocols because congestion

and routing control are not needed, packets cannot be received out of order, fewer error types

are possible, and errors are less common [PopeBl].

The read and write operations become ambiguous unless both a reader process and a

writer process are connected to a pipe. Should a writer be blocked from entering information

until the reader opens its end? What happens if either the reader or writer breaks its

July 10,1984

~

21

I

I
I
I

I
I
I
I
I

I Machine B

I Process 2

Machine A

Process 1

I Communications \ I I
I&

Level

Stream Sending
Buffer

T ’;> Process

I Packets

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Stream Receiving
Buff-

Receive
Process

I Packets

FIGURE 2. A netwak protocol muat be need when two procewee connected by a pipe are on
different machinee. The WR.I!I’E nqacrts of the sender append segment. to a stream awaiting
trammission. The sender proceee t r d t s the stream ae a eequence of packets, which are
converted back into a atream and placed in the receiving buffer. Each READ m e a t of the
receiver waits until the requested amount of data is in the buffer then return8 it.

connection? Questions like these are dealt with by a connection protocol. A simple connection

protocol is called rendezvous on open and close:

1. The open-for-reading and the open-for-writing requests may be called at different times

but both returns are simultaneous.

July 10, 1984 22

2. The close operation, executed by the reader, shuts both ends of the pipe; executed by the

writer is deferred until the reader empties the pipe.

A pipe capability can be stored in a file or a message and passed to another machine over

an existing open pipe or by broadcast. A pipe capability can also be listed in a directory (to be

discussed later), making the pipe a global object. (In this case it is like a “FIFO file” in

System-5 UNIX [&1183].)

The communications level also contains a broadcast operation to permit Levels 10, 11,

and 12 to request mapping information from their counterparts on other machines. For

example, if the file level on one machine cannot locally open the file named by a given.

capability, it can broadcast that capability to the file levels of other machines; the machine

actually holding the file responds with enough information to allow the broadcaster to

complete its pending open operation.

5. FILES (Level 10)

Level 10 implements a long-term store for files. A file is a named string of bits of known,

but arbitrary length and is potentially accessible from all machines in the network. The

operations for files are summarized in Table 5.

To establish a connection with a file, a process must present a file capability to the

OPEN-FILE operation, which will find the file in secondary storage and allocate buffers for

transmissions between the file and the caller. The transmissions themselves are requested by

READ-FILE and WRITE-FILE operations. Each read operation copies a segment of

information from the file to the caller’s virtual memory and advances a read pointer by the

length of the segment. Each write operation appends a segment from the caller’s virtual

July 10,1984 23

TABLE 5: Speciflcation of Files Level Interface (Level 10).

Form of call Effect

file-cap := CREATE-FIL.E()

DES TROY-FILE(file-cap)

op-file-cap := OPEN-FILE(fik-cap, m)

READ-FILE
WRITE-FILE
CLOSE-FILE

RE W IND(op-file-cap)

ERASE(op-file-cap)

Createa a new empty file and returns a capability for it. (If
the caller u a uwr p r ~ ~ c u , it can store this capability in a
directory entry and make the fde availabk throughout the
syrtem.)

Destroy the given file (undo a createfile operation).

Opens the fie named by the file capability by allocating
storage for buffen and setting up a dacriptor block. The
value of R (read, write, or both) u put in the acccu fnld of
the open-file capability. The read pointer b wt to e r o and
the write pointer to the file’s length. (Failm if the fh b
already open.)

These have the same effects u the READ, WRITE, and
CLOSE operations dacribed in the eection on stream I/O.

R e u t red pointer to zero.

Set fik kngth u d write pointer to zero; nkuc secondary
storage blockoccupied by the fde.

memory to the end of the file.

In a multi-machine system, the file level must deal with the problem of nonlocal files.

What happens when a process on one machine requests to open a file stored on another

machine? There are two alternatives:

1. Open a pair of pipes to Level 10 on the file’s home machine; read and write requests are

relayed via the forward pipe for remote exeution; results are passed back over the reverse

pipe. (This is called remote open.)

2. Move the file from its current machine to the machine on which the file is being opened;

thereafter all read and write operations are local. (This is called file migration.)

July 10, 1984 24

Both methods are feasible. An instance of remote open is in the Berkeley COCANET system

(Rowe821. An instance of migration is in the Purdue STORK file system (Pari831.

The open connection descriptor block for a file, which is addressed by an open-file

capability, indicates whether read and write operations can be performed locally or must

interact with a surrogate process on another machine. In the latter case, the required open-

pipe capability will be implanted in the descriptor block by the open-file command.

Figure 3 illustrates the types of capabilities generated and used during a typical file-

editing session.

One important improvement to the basic file system is to allow multiple readers and

writers by building in to the read and write operations a solution to the “readers and writers”

synchronization problem IHolt78). Another is to use a version control system to automatically

retain different revisions of a file; the file system can then provide access to the older versions

when needed [Tich82].

’

8. DEVICES (Level 11)

The devices level implements a common interface to a wide range of external input and

output devices -- for example, terminal displays and keyboards, printers, plotters, time-of-day

clock, and optical readers. The interface attempts to hide differences among devices by making

input devices appear as sources of data streams and output devices appear as sinks. Obviously,

the differences cannot be completely hidden -- for example, cursor-positioning commands must

be embedded in the data stream sent to a graphics display -- but a surprising amount of

uniformity can be achieved.

Corresponding to each device is a device driver program that translates commands at the

interface to instructions for operating that device. A considerable amount of effort may be

July 10,1984 25

User’s
Virtual
Memory Program

Buffer

Descriptor
Block

5

FIGURE 3. The steps of an editing session generate and use various capabilities. 1) CanVert
the external name &ring to a capability, el; this can be done by a dbectary-aeeueh e-d.
2) Open the file faa reading and writing by the command ed := OPEN FILE (el , RW). 3)
Copy the fik into a buffer by the command READ-FILE(ed, B, elf). 4)Edit the content. of
the buffer. 5) Replace the older redm of the file by the pair of cmnman& “EUSE(c2);
WRITE FILE(&, B, L)”, where L is the length ofthe buffer. 6) Cloee the fUe by the -
commurd CLOSEFILE(ed).

July 10, 1984 26

required to constructla reliable, robust device driver. When a new device is attached to+,he

system, its physical address is stored in a special file accessible to the device drivers.

Table 6 summarizes the interface for external devices.

7. STREAM 1 / 0 (Level 12)

An important principle adopted in the hypothetical operating system we are describing

here is input-output independence. A t Levels 9, 10, and 11 the same fundamental operations

(namely OPEN, CLOSE, READ, and WRITE) are defined for pipes, files, and devices.

Although writing a block of data to a disk calls for a sequence of events quite different from

that needed to supply the same data to the laser printer or to the input of another program,

..

the author of a program does not need to be concerned with those differences. All read and

TABLE 6: Specification of Devices Level Interface (Level 11).

Form of call Effect

dev-cap := CREATE-DEV(type, addrera) Returnr a capability for a device of the given type at the
given d d r e u . The accerr code of the returned capability
will not include “W” if the device is read-only or ”R” if t he
device u write-only.

DESTROY -DEV(dev-cap) Detach the given device from the system (undo a create-
device operation).

op-dev-cap := OPENDEV(dev-cap, rw) Opens the device named by the device capability by
allocating storage for buffen and wttiag up a deicriptor
block. The value in the access field of the open-device
capability is the logical AND of rw and the accem code of
the device capability. (Fail6 if the device is already open.)

READ-DEV
WRITE-DEV
CLOSE-DEV

There have the same effects M the READ, WRITE, and
CLOSE operationr dercribed in the clection on stream I/O.

..

July 10,1984 27

write. statements in .a program can refer to input and -output ports, which are attached to

particular files, pipes, or devices only when the program is executed.

This strategy, which is an instance of delayed binding, can greatly increase the versatility

of a program. A library program (such as the pattern-finding “grep” program in UNIX) can

take its input from a file or directly from a terminal and can send its output to another file, to

a terminal, or to a printer. Without delayed binding, each program would have to be written

to handle each possible combination of source and destination.

A common model of data must be used for pipes, files, and devices. The simplest

possibility is the stream model in which these objects are media for holding streams of bits.

Corresponding to each of these objects is a pair of pointers, R for reading and W for writing; R

counts the number of bytes read thus far and similarly for W. Each read request begins at

position R and advances R by-the number of bytes read. Similarly, each write-request begins

at position W and advances W by the number of bytes written.

*’T

The blocks of data moved by read or write requests are called segments; seg(z,n) denotes a

contiguous sequence of n bytes beginning at position z in a given data stream. The exact

intcrpret.ation of a read (or write) request depends on whether the segment comes from a pipe,

file, or device. For example, a read request can only be applied at the output end of a pipe and

the reader is required to wait until the writer has supplied enough data to fill the request. An

output-only device, such as a laser printer, cannot be read and an input-only device, such as a

terminal keyboard, cannot be written.

The OPEN operation of Level 12 returns an op-T-cap, corresponding to a given T-cap

for T, a pipe, file, or device. The op-T-cap represents an active connection through which

data may be passed efficiently to and from the object. The READ and WRITE operations

request segment moves across such a connection. The CLOSE operation breaks the connection.

- -

July 10, 1984 28

Because the-stream model has already been incorporated into the pipes, files, and devices

levels, the only new mechanism is a way of switching from a Level-12 operation to its

counterpart in the level for the type of object connected to a port. For example,

OPEN(T-cap, rw) means

CASE T OF
pipe: RETURN OPEN-PIPE(T-cap, rw);
file: RETURN OPEN-FILE(T-cap, rw);
dev: RETURN OPEN-DEV(Tcap, rw);
ELSE: error;

END CASE

Table 7 summarizes the interpretations of the four operations of OPEN, CLOSE, READ,

and WRITE for the three kinds of input-output object.

The stream model is not used in every operating system. For example, in Multics,

segments are explicit components of the virtual memory; there-is no need f o r a separate

concept of file because segments are retained indefinitely until deleted by their owners

[Orga72]. In Multics the four operations of Table 7 are implicit. The first time a process refers

to a segment, a “missing-binding” interrupt causes the operating system to load and bind that

segment to the process. The process can thereafter read or write the segment using the

ordinary virtual-addressing mechanism. Certain segments of the address space are

permanently bound to devices; reading or writing those segments is equivalent to reading or

writing the device. There is no concept of pipe, but the interprocess communication

mechanism allows a data stream to be transmitted from one process to another.

*.

8. USER PROCESSES (Level 13)

A user process is a virtual machine containing a program in execution. It consists of a

primitive process, a virtual memory, a list of arguments passed as parameters, a list of ports,

July 10,1984

TABLE 7: Semantic. of 1/0 Operations on Objects (Level 12)

Pipe

Ver‘lry that T_cq refen
to M unopened pipe. Ur
OPENJWE(T_cap, R)
to init-* an open-pipe
dneriptor bloek in which
R = W = 0; return the
o p s 4 u w .

Invoke
WRIT~PPE(OPS~P~_E~P,
A, a) to copy MI (a ,a) to
ng (W ,a) and advance
W to R + a . (MAY
awaken waiting d e r) .

If the pipe contains a

that ruder the r e d i n g
= p e n t in the pipe.
Invoke
CLOSl$-pIPE(opgipem)
to d u l k c a t e the open-
pipe descriptor b b e t

waiting reader, return to

File

Verify that T_cap refers
to an unopened tile. Uw
OPEN-lE(T_cap. cw)
to init- an open-file
deuriptor b k k in which
R =Oand W = L (fde
length); return the
opJde-cap.

Set m = min[L -R , a 1.
Invoke
R E A D _ F I L E (o ~ i a p ,
a, m) to COPY w (R .m 1
to reg(a,m)- If n = d ,
return immediitely with
whatever u in the file,
reg (R .W -R).

Invoke
WRITE_FILE(op_fe_cap,
A, n) as for pipe, plus
advance L to L +a .

Invoke
CLOSEJILE(opxile_cap)
to deallocate the open-file
descriptor block.

Device

Verify that T-cq mfers
to M unopened device.
UK OPENqEV(TAap,
iw) to initiaIixe an open-
device descriptor bbck in
which R = 0 or W = 0,
s ~ ~ ~ r d i n g m the device k
input or output; return
the op-dev_cap.

~~

Invoke
READ-DEV(op>ey_cap,
a, m) M for f&. If n = d ,
return immedii with
whatever input m
avaihhk, ref (R .W -R).
(No effect for outpat
device.)

Invoke
W RITEJ)EV(o&cv>p,
a, n) M for pipe. (No
effect for input dcvicc.)

Invoke
CL OSE-DEV(o p _ d e y ~)
to deallocate the open-
device ‘descriptor block.

and context. Each “port” is a capability for an open pipe, file, or device. The “context” is a

set of variables characterizing the environment in which the process operates; it includea the

current working directory, the command directory, a link to the parent process, a l i k e d lit of

spawned processes, and a signal variable that counts the number of spawned processes whose

execution is yet incomplete. Figure 4 illustrates the format of a user process descriptor block.

July 10, 1984 30 -
stateword

PORTS

0 I default input I

pointer to
virtual memory

CONTEXT

ARGS

pi
argument list

CD

WD

signal

parent

children

command dir.
~

working dir.

FIGURE 4. A user process is a virtual machine created for the purpose of executing a given
program. It contains a primitive procese, a virtual memory holding the given program, a list
of arguments supplied at the time of call, a list of ports, and a set of context variables. By
convention, PORTS[O] is the default input and PORTS[l] is the default output; these two
ports are bound to pipes, files, or devices when the process ie created. The process c a n open
other ports as well after it commences execution.

A new user process is created by a FORK operation. The creator is called the “parent”

and the new process a “child”. A parent can exercise control over its children by resuming,

suspending, or killing them. A parent can stop and wait for its children to complete their tasks

by a join operation, and a child can signal its completion by an exit operation. Table 8

summarizes.

July 10,1984 Sl

TABLE 8: Specification of User Proceas Operations (Level 13)

Form of Call Effect

up-cap := FORK(fi1e-cap, param, in, out)

EXIT

SUSPEND(up-cap)

RESUME(u p-cap)

op-T-cap := OPEN(T-cap.ru)

Allocate a user proceu dexriptor block. Create a rurpended
primitive proctu and rtore ita index in a new user-proccu
capability. Create a virtud memory and load the executable
file denoted by fde-cap. Copy the punmeten into the
ARGS Imt. Verify that ir and .ut are capabilities for pipes,
fila, or deviceo; if so, open ir for readiig and put the open-
capability in PORTS(O1, and open d for writing and put
the open-capability in PORTS(l1.

Wait until caller’r context variable, r i d ia A, then return.

Terminate the designated umer proccu, but only if it ia a
child of the c a r . T h i eat& destroying the primitive
procar and virtual memory, closiig open pipes, fb, or
devica connected to ports, rekaring the storage held by the
dacriptor block, and removing the deleted proccu from the
h t of the cder’r children.

Terminate the c d e r procar and add 1 to the rigad variable
of the parent proccu.

Put the primitive procar contained within the u r n proccu
L‘up-cap’’ into the ruapended date, bat only if the ulkr b
the parent of proccu “up-cap”.

Put the primitive procw contained within the user proccu
“up-cap” into the ready state, but only if the c&r in the
parent of procen “up-cap”.

Invoke the OPEN command in Level 12, store a copy of the
result in the next avdnbk pmition in the PORTS table and
return the result to the caller (T ia pipe. file, or devicd.

Notice that an OPEN operation appears in Table 8. This OPEN operation hides the

Level-12 OPEN from higher levels. It allows Level 13 to store copies of all open-object

capabilities in the PORTS table. When a process terminates, Level 13 can assure that all open

objects are clo-ked by invoking the Level-12 CLOSE operation for each entry in the PORTS

table.

. . - . . . -

July 10, 1984 32

9. DIRECTORIES (Level 14)

Level 14 is responsible for managing a hierarchy of directories containing capabilities for

sharable objects. In our hypothetical system, these a re pipes, files, devices, directories, and

user processes; capabilities for open pipes, files, and devices are not sharable and cannot appear

in directories. A hierarchy arises because a directory can contain capabilities for subordinate

directories.

A directory is a table that matches an external name, stored as a string of characters,

with an access code and a capability. In a tree of directories, the concatenated sequence of

external names from the root to a given object serves as a unique, system-wide external name

for that object. A directory system of this kind has been implemented on the Cambridge CAP

root e
- .

e denning a. a b tic y

net-hosts brown
laser e clock 0 0 nroff e eqn a d e t I passwd

terminal

FIGURE 5. A directory hierarchy can be depicted as an inverted tree whose topmost node is
called “root”. Some directories are permanently reserved for specific purposes. For example,
the deu directory lists all the external devices of the system. The lib directory lists the library
of all the executable programs maintained by the system’s administration. A U I C ~ directory
contains a subdirectory for each anthorhed user; that subdirectory is the root ofa subtree
belonging to that user. In UNIX, the unique external name of an object is formed by
concatenating the external names along the path &om the root, separated by slash (/) and
omitting “root”. Thus the laser printer’s external name is “/dev/laser”.

July 10,1984 33

The principal operation of Level 14 is a search command that locates and returns the

capability corresponding to a given external name. Thus the directory level is merely a

mechanism for mapping external to internal names. Only one type of capability can be

mapped to an object at this level: a directory capability. All other capabilities must be

presented to their respective levels for interpretation. Information about object attributes,

such as ownership or time of last use, is not kept in directories; it is kept in the object

descriptor blocks within the object manager levels.

I I
Itdevtt

FIGURE 8. A directory is a table matching an external name String with an acceas code and
a capability. Every directory containe a capability pointing to ita immediate parent and a
capability pointing to itsee the eel€-capability ie can be nsed to till in the parent entry in a
new subordinate directory. & c a w directoriee are at a higher level than files, the file system
can be wed to etare directories. A directory containing d y the eelf and parent entries ie
considered empty.

July 10, 1984 34

The requirement for system-wide unique names implies that the directory level also has

the responsibility for ensuring that portions of the directory hierarchy resident on each machine

are consistent. This can be accomplished by methods for replication in a distributed database

system [Seli80]. To control the number of update messages in a large system, the full directory

database may be kept on only a small subset of machines (e.g., two or three) implementing a

stable store. Copies of the views of the directory database being accessed by a given user can

be stored in a workstation or other local system after that user logs in. Operations that modify

an entry in a directory must send updates to the stable-store machines, which relay them to

affected workstations.

Specifications of the principal operations of the directory level are given in Table 9.

These operations allow higher-level programs to create objects and store capabilities for them

in direcfories, This table is not a complete specification of a directory manager; for example, it

contains no command to change the name and access fields of a directory entry.

-

The attach operation is used to create new new entry in a directory. The access field of

the capability returned by a search operation will be the conjunction of the entry’s access code

and the access field already in the capability.

In the special case of attaching a directory to a directory, the attach operation must also

define the parent of the newly attached directory. The operation fails if a parent is already

defined (see Figure 6). The detach operation only removes entries from directories but has no

effect on the object to which a capability points.. To destroy an object, the destroy operation

of the appropriate level must be used. To minimize inadvertent deletions, the destroy-directory

operation fails if applied to a nonempty directory.

The attach and detach operations must notify the stable store so that changes become

effective throughout the system. To keep this simple, we have required a) that an empty

July 10,1984 ss

TABLE 9 Specification of a Directory Manager Interface (Level 14).

Form of Call Effect

dir-cap := CREATEDIR(acceu) AbCAte an empty directory. Return a capability with i k
permhiin bit. net to the given acceu code. (Thu dimtory
i not attached to the dimtory t m .)

Dertroy (remove) the given ditectory. (Fib if the dimtory
i nonempty.)

Make an entry c d e d rrme in the given directory (dir-cap);
Itore in it the given object-capability (dj-cap) and the
given acceu code. If obj-ecp denoter a directory, set i k
parent entry from the self entry of the dinctory hr-crp.
Notify the dimtory s tabk store of the change. (Faib if the
name already exists in the dimtory 4ir-c.p. if the dimtory
dir-crp u not attached, or if 06j-ecp denota an already-
attached d i t o r y .)

Remove the entry of the given lumc from the given
d m t o r y . Notify the dimtory rtable store of the change.
(F& if the name d o n not exist in the given dimtory or if
the given dircctory & nonempty.)

Find the entry of the given nrmc in the given dircctory and
return a copy of the associated capability. Set the acccu
field in the returned capability to the minimum privilege
enabled by the a c c c ~ . fields of the dimtory entry and of the
capability. (F a if the n m e doer not exist in the given
directory.)

In a segment of the calkr'r virtual memory, return a copy of
the contents of the dimtory. (A user-level program can
interrogate the other lev& for other information about the
objects lirted in the d m t o r y - e.&., date of lart change.)

DES TROY -DIR(du-cap)

ATTACH(obj-cap, du-cap, name, acceu)

DETACH(du-cap, name)

obj-cap := SEARCH(dir-cap, name)

oeg := LIST(dir-cap)

directory must first be attached to the global directory tree before entries are made in it, and

b) that a directory must be empty before being detached. A more complicated notification

mechanism will be needed if a process is allowed to construct a directory subtree before

attaching its root to the global directory tree.

July 10, 1984

10. SHELL (Level 15)

36

Most users of the system spend most of their time employing existing programs, not

writing new ones. When a user logs in, the operating system creates a user process containing

a copy of the shell program with its default input connected to the user’s keyboard and its

default output connected to the user’s display. The shell is the program that listens to the

user’s terminal and interprets the input as commands to invoke existing programs in specified

combinations and with specified inputs.

The shell scans each complete line of input to pick out the names of programs to be

invoked and the values of arguments to be passed to them. For each program called in this

way, the shell creates a user process. The user processes are connected according to the data

flow specified in the command line.

Operations of substantial complexity can be programmed in the commrind.language of the

UNIX shell. For example, the operations that format then print a file named “text” can be set

in motion by the command line:

-

tbl < text 1 eqn I lptroff > output

The first program is t b f , which scans the data on its input stream and replaces descriptions of

tables of information with the necessary formatting commands. The “<” symbol indicates

that tbf is to take its input from the file “text”. The output of tbl is directed by a pipe (the “I”

symbol) to the input of eqn, which replaces descriptions of equations with the necessary

formatting commands. The output of eqn is then piped to lptroff, which generates the

commands for the laser printer. Finally, the “>” symbol indicates that the output of fptroffis

to be placed in a file named “output”. If “> output” were replaced with ‘‘1 laser”, the data

would instead be sent directly to the laser printer.

July 10, 1984 57

Having identified itie -eoiiiponsnta of a ccmmand .!in,=, the she!! obtains capabilities for

them by a series of commands:

c l := SEARCH(CD, “tbl”);
c2 := SEARCH(WD, “text”);
c3 := CREATEPIPEO;
c4 := SEARCH(CD, “eqn”);
c5 := CREATEPIPEO;
c6 := SEARCH(CD, “lptroff”);
c7 := CREATEFILE();
ATTACH(c7, WD, “output”, all);

The variable “CD” holds a capability for a commands directory and “WD” holds a capability

for the current working directory. Both CD and W D are part of the shell’s context (see

Figure 4).

The shell then creates and resumes user processes that execute the three- components of

the pipeline and awaits their completion:

RESUME(FORK(c1, -, ~ 2 , ~ 3));
RESUME(FORK(c4, -, ~ 3 , ~ 5));
RESUME(FORK(c6, -, ~ 5 , c?));
JOIN (3);

After the JOIN returns, the shell can kill these processes and acknowledge completion of the

eniire command to the user (by a “pr~mpt” character!.

If the specification “< text” were omitted, the shell would have connected t M to the

default input, which is the same as its own, namely the terminal keyboard. In this case, the

second search command would be omitted and the first fork operation would be

FORK(c1, -, PORTS[O], ~ 3)

Similarly, if ‘‘> output’’ were omitted, the shell would have connected lpttoffto the default

output, the shell’s PORTS[l].

July 10, 1984 38

If an.elaborate command-line is to be performed .often, typing it can become tedious.

UNIX encourages users to store complicated commands in executable files called shell- scripts

that become simpler commands. A file named l p might be created with the contents:

tbl < $1 I eqn 1 lptroff > $2

where the names of input and output files have been replaced by variables $1 and $2. When

the command l p is invoked, the variables $1 and $2 are replaced by the arguments following

the command. For example, typing

lp text output

would substitute “text” for $1 and “output” for $2 and so would have exactly the same effect

as the original command line. - ?.,
- . .- 1_

11. INITIALIZATION

One small but essential piece of an operating system has not been discussed -- the method

of starting up the system. The startup procedure, called a bootstrap sequence, begins with a

very short program copied into the low end of main memory from a permanent read-only

memory. This program loads a longer program from the disk, which then takes control and

loads the operating system itself. Finally, the operating system creates a special login process

connected to each terminal of the system.

When a user correctly types an identifier and a password, the login process will create a

shell process connected to the same terminal. When the user types a logout command, the

shell process will exit and the login process will resume its vigil over the terminal.

July 10, 1984 38

12. CONCLUSION

We have used the levels model to describe the functions of contemporary multi-machine

operating systems. This description shows how i t is possible to systematically hide the physical

locations of all sharable objects and yet be able to locate them quickly when given a name in

the directory hierarchy.

The directory function can be generalized from its traditional role by storing capabilities,

rather than file identifiers, in directory entries. No user machine need have a full, local copy of

the directory structure; it need only encache the view with which i t is currently working. The

full structure is maintained by a small group of machines implementing a stable store.

The model can deal with heterogeneous systems consisting of general purpose user

machines, such as workstations, and special purpose machines, such as stable stora, file

servers, and supercomputers. Only the user machines need contain a full operating system; the

special purpose machines require only a simple operating system capable of managing local

tasks and communicating on the network.

.-
-

The levels model is based on the same principle found in nature to organize many scalea

of space and time. *4t each !eve1 of abstraction there are well defined rules of interaction for

the objects visible at that level; the rules can be understood without detailed knowledge of the

smaller elements making up those objects. The many parts of an operating system cannot be

fully understood without recourse to this principle.

13. ACKNOWLEDGEMENTS

We are grateful to many colleagues for advice and counsel while we formulated and

refined this model. These include J. Dennis, E. Dijkstra, N. Haberrnann, B.Randel1, and M.

Wilkes for early inspirations about hierarchical structure; K. Levitt, M. Meliar-Smith, and P.

July 10, 1984 40

Neumann for numerous discussions about PSOS; D. Cheriton, for demonstrating in the

THOTH system, D. Comer, for demonstrating in the XINU system, and G. Popek, for

demonstrating in the LOCUS system, many of the ideas of this paper; D. Schrader for advice

on distributed databases and help with the document; D.Denning for advice on access controls,

capability systems, and verification; A. Birrell, B. Lampson, R. Needham, and M. Schroeder for

advice on “server models” of distributed systems; and D. Farber, A. Hearn, T. Korb, and L.

Landweber for advice on networks through the CSNET Project. We are grateful to the

National Aeronautics and Space Administration, which supported part of this work under

contract NAS2-11530 a t RIACS. We are also grateful to the National Science Foundation,

which supported part of this work through grant MCS-8109513 at Purdue University.

14. REFERENCES
Be1183.

Bell Laboratories,, “UNIX, System User’s Manual: System V,” 301-905 Issue 1, Western
Electric (January 1983).

-

Birr82.
Birrell, Andrew D., Roy Levin, Roger M. Needham, and Michael D. Schroder, “Grapevine:
An Exercise in Distributed Computing,” Communications of the A CM 25(4) pp. 260-274
(April 1982).

Bogg83.
Boggs, David R., “Internet Broadcasting,” CSL-83-3, XEROX PARC, Palo
Alto (October 1983).

Brin73.
Brinch Hansen, P., Operating System Principles, Prentice-Hall, Englewood Cliffs,
N J (1973).

Cheriton, David R., The Thoth Syatern: Multi-procese Structun’ng and Portability, Elsevier
Science, New York (1982).

Cher82.

Cher84.
Cheriton, David R., “The V Kernel: A Software Base for Distributed Systems,” IEEE
Software l(2) pp. 19-42 (April 1984).

Come84.
Comer, Douglas, Operating System Design: The XINU Approach, Prentice-Hall,
Englewood Cliffs (1984).

Den n 70.
Denning, Peter J., “Virtual Memory,” Computing Surveys 2(3) pp. 154-216 (September

July 10,1984 41

1970).

Denning, Peter J., “Third Generation Computer Systems,” Computing Surveys S(4) pp.
175-212 (December 1971).

Denning, Peter J., “Fault-Tolerant Operating Systems,” Computing Surveys 8(4) pp. 359-
389 (December 1976).

Denning, Peter J., T. Don Dennis, and Jeffrey A. Brumfield, “Low Contention
Semaphores and Ready Lists,” Communications of the A CM 24(10) pp. 687-699 (October
1981).

Dennis, J. B. and E. C. Van Horn, “Programming Semantics for Multiprogrammed
Computations,” Communications of the ACM9(3) pp. 143-155 (March 1966).

Dijkstra, Edsger W ., “The Structure of the THEMultiprogramming System,”
Communications of the A CM l l (5) pp. 341-346 (May 1968).

Fabry, R. S., “Capability-Based Addressing,” Communications of the A CM 17(7) pp.

Denn7 1.

Denn76.

Denn81.

Denn66.

Dijk68.

Fabr74.

403-412 (July 1974).
Gold74. - +%-.

Goldberg, Robert P., “Survey of Virtual Machine Research,” Computer, pp. 34-46 (June
1974).

Habermann, A. Nico, Lawrence Flon, and Lee W. Cooprider, “Moduiarization and
Hierarchy in a Family of Operating Systems,” Communications of the ACM 19(5) pp.
266-272 (May 1976).

Holt, R. C., E. D. Lazowska, G. S. Graham, and M. A. Scott, Structured Concurrent
Programming with Operating Systems Applicutions, Addison- Wesiey, Eieading, Tv‘A (1978).

IBM,, “IBM Virtual Machine Facility/370: Introduction,” GC20-1800-1, IBM (August
1973).

Jones, Anita K., Robert J. Chansler Jr., Ivor Durham, Karsten Schwans, and Steven R.
Vegdahl, “StarOS, A Multiprocessor Operating System for the Support of Task Forces,”
Proceedings of the Seventh Symposium on Opcruting Systems Principles, pp. 117-127
(December 1979).

Kernighan, Brian W. and Rob Pike, The UNIX Programming Environment, Prentice-Hall,
Englewood Cliffs (1984).

Levy, Henry M., Ccrpub;lityBuscd Computer Systems, Digital Press, Bedford, MA (1984).

Habe76.

Holt78.

IBM73.

Jone79.

Kern84.

Levy84.

July 10, 1984 42

Neum80.
Neumann, Peter G., Robert S. Boyer, Richard J . Feiertag, Karl N. Levitt, and Lawrence
Robinson, “A Provably Secure Operating System, its Applications, and Proofs,” CSL-116
(2nd edition), SRI International, Menlo Park, CA (May 7, 1980).

Orga83.
Organick, Elliott, A Programmer’s View of the Intel 432 System, McGraw-Hill, New
York (1983).

Orga72.
Organick, Elliot I., The Multics System: A n Ezamination of its Structure, The MIT Press,
Cambridge, MA (1972).

Ousterhout, John K., Donald A. Scelza, and Pradeep S. Sindhu, “Medusa: An
Experiment in Distributed Operating System Structure,” Communicationa of the A CM
23(2) pp. 92-105 (February 1980).

Oust80.

Pari83.
Paris, Jehan-Francois and Walter F. Tichy, “Stork: An Experimental Migrating File
System for Computer Networks,” CSD-TR-411, Purdue University, West Lafayette,
IN (February 1983).

Pope8 1.
Popek, G., B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin, and G. Thiel,
“LOCUS: A Network Transparent, High Reliability Distributed System,” Proceedings of

- - - the Eighth Symposium on Operating Systems Principles, pp. 169-177 (December 1981).
. ‘C

Ritc74.
Ritchie, D. M. and K. L. Thompson, “The UNIX Time-sharing System,”
Communications of the ACM 17(7) pp. 365-375 (July 1974).

Rowe82.
Rowe, Lawrence A. and Kenneth P. Birman, “A Local Network Based on the UNIX
Operating System,” IEEE Transactions on Software Engineering SE-8(2) pp. 137-146
(March 1982).

Seli80.
Selinger, P. G., “Replicated Data,” pp. 223-231 in Distributed Data Bases, ed. F.
Poole,Cambridge University Press, Cambridge, England(1980).

Tanenbaum, Andrew S., Computer Networks, Prentice-Hall, Englewood Cliffs, N J (1981).

Tichy, Walter F., “Design, Implementation, and Evaluation of a Revision Control
System,” pp. 58-67 in Proceedings of the 6th International Conference on Software
Engineering, IPS, ACM, IEEE, NBS(September 1982).

Wilkes, M. V. and R. M. Needham, The cambridge C A P Computer and its Operating
System, ElsevierjNorth-Holland Publishing Co. (1979).

Wulf, William A., Roy Levin, and Samuel P. Harbison, HYDRA/C.mmp, An
Ezperimental Computer System, McGraw-Hill (1981).

Tane8 1.

Tich82.

Wilk79.

WUlf81.

